Метод сечений.  Виды деформаций Растяжение и сжатие Расчеты на прочность при изгибе Понятие о теориях прочности Классификация машин Кулачковые механизмы Ременные передачи Подшипники скольжения

Теоретическая механика лекции и задачи

Расчеты на прочность при изгибе

Проверку прочности и подбор сечений изгибаемых балок обычно производят исходя из следующего условия: наибольшие нормальные напряжения в поперечных сечениях не должны превосходить допускаемых напряжений [а] на растяжение и сжа­тие, установленных нормами или опытом проектирования для материала балки.

Для балок из материалов, одинаково сопротивляющихся растяжению и сжатию (сталь, дерево), следует выбирать сечения, симметричные относительно нейтральной оси (прямоугольное, круглое, двутавровое), чтобы наибольшие растягивающие и сжи­мающие напряжения были равны между собой. В этом случае условие прочности по нормальным напряжениям имеет вид

Ниже приведены формулы для вычисления моментов сопроти­вления некоторых сечений.

Для прямоугольника (см. рис. 50, а)

Для круга (см. рис. 50, б):

приближенно для круга можно считать Wx та 0, Id3.

Для кольца (см. рис. 49, б)

где а = djdn — отношение внутреннего диаметра кольца к на­ружному.

Для балок, изготовленных из материалов, неодинаково сопро­тивляющихся растяжению и сжатию  (например, из чугуна), выгодны сечения, несимметричные относительно нейтральной оси. В этом случае прочность по нормальным напряжениям проверяют по формулам:

где yр и yG— расстояния от нейтральной оси х до наиболее уда­ленных точек в растянутой и сжатой зонах сечения; [стр] и [сг0] — допускаемые напряжения на растяжение и сжатие.

Использование материала будет наилучшим, когда ор шах = = [сгр], а сСШах = [ас]; для этого необходимо условие

т. е. расстояния нейтральной оси от наиболее удаленных точек в растянутой и сжатой зонах сечения должны быть пропорци­ональны соответствующим допускаемым напряжениям.

Формула напряжений при изгибе выведена на основании закона Гука и потому справедлива только при напряжениях, не превышающих предела пропорциональности материала балки.

С помощью условия прочности по нормальным напряжениям при изгибе можно решать следующие три задачи.

Проверка прочности (проверочный расчет) производится в том случае, когда известны размеры сечения балки, наибольший изгибающий момент и допускаемое напряжение [а]. При этом непосредственно используется условие (90).

Подбор сечения (проектный расчет) производится в том случае, когда заданы действующие на балку нагрузки, т. е. можно определить наибольший изгибающий момент | M|шах и допуска­емое напряжение [а].

Решая неравенство (90) относительно Wx, получаем

По необходимому моменту сопротивления Wx, задавшись формой сечения, подбирают его размеры.

Следовательно, ускорения точек плоской фигуры определяются в каждый данный момент времени так, как если бы движение плоской фигуры было вращением вокруг мгновенного центра ускорений  Q (рис. 2.31). При этом ускорения точек плоской фигуры будут пропорциональны их расстояниям от М.Ц.У.

 

 

 

 Рис. 2.31. Определение ускорений с помощью М.Ц.У.

Центробежные моменты инерции симметричны относительно своих индексов, т.е. Jxy=Jyx и т.д. В отличие от осевых, центробежные моменты инерции могут иметь любой знак и обращаться в нуль. Главной осью инерции тела назыв. ось, для которой оба центробежных момента инерции, содержащие индекс этой оси, равны нулю. Например, если Jxz=Jyz=0, то ось z – главная ось инерции. Главной центральной осью инерции назыв. главная ось инерции, проходящая через центр масс тела. 1)Если тело имеет плоскость симметрии, то любая ось, перпендикулярная к этой плоскости, будет главной осью инерции тела для точки, в которой ось пересекает плоскость. 2)Если тело имеет ось симметрии, то эта ось является главной осью инерции тела (ось динамической симметрии). Размерность всех моментов инерции [кгм2]

Изгиб Элементы конструкций, работающих на изгиб, называют балками. Чаще всего встречается поперечный изгиб, когда внешние силы, перпендикулярные к продольной оси балки, действуют в плоскости, проходящей через ось балки и одну из главных центральных осей ее поперечного сечения, в частности, в плоскости, совпадающей с плоскостью симметрии балки, например, сила F Нормальные напряжения при изгибе

Определение наибольшего допускаемого изгибающего момента производится в том случае, когда заданы размеры сечения
балки и допускаемое напряжение

Понятие о сложном деформированном состоянии Сложное деформированное состояние возникает в тех случаях, когда элемент конструкции или машина подвергается одновременно нескольким простейшим деформациям.

Дифференцирование вектора в подвижной системе отсчёта. Сложное движение точки; абсолютное, переносное и относительное движения. Теоремы о скоростях и ускорениях точки при сложном движении. Кориолисово ускорение. Сложное движение твёрдого тела. Теорема о сложении угловых скоростей. Сложение мгновенных движений. Сложение мгновенных вращений вокруг параллельных, пересекающихся и скрещивающихся осей.
Расчеты на прочность при изгибе Теоретическая механика Сопротивление материалов //-->