Метод сечений.  Виды деформаций Растяжение и сжатие Расчеты на прочность при изгибе Понятие о теориях прочности Классификация машин Кулачковые механизмы Ременные передачи Подшипники скольжения

Теоретическая механика лекции и задачи

Подшипники скольжения

Для поддержания осей и валов с насаженными на них деталями и восприятия действующих на них усилий служат специальные опоры: подшипники, нагружаемые радиальными силами, и подпятники, нагружаемые осевыми силами. По характеру трения рабочих элементов опоры разделяют на опоры скольжения и опоры качения (шариковые и роликовые подшипники).

Выбор вида опоры зависит от большого числа конструктивных и эксплуатационных факторов. В опорах качения потери на трение обычно меньше, чем в опорах скольжения. Обеспечение в опорах скольжения жидкостного трения, при котором потери на трение соизмеримы с потерями в опорах качения, не всегда возможно.

Подшипники скольжения используют в современном машиностроении значительно реже подшипников качения. Однако имеется ряд областей, где их применение является предпочтительным. Например для подшипников особо тяжелых валов (для которых подшипники качения не изготовляют), для подшипников, подвергающихся ударной или вибрационной нагрузке, если необходимо иметь разъемные подшипники (для коленчатых валов) и тому подобное.

Подшипник скольжения состоит из двух основных элементов: корпуса и вкладыша. Вкладыш, являющийся рабочим элементом опоры, может быть неподвижным относительно корпуса, подвижным и самоустанавливающимся; тип вкладышей выбирают в зависимости от отно­шения  длины цапфы к ее диаметру, т. е.и режима работы данной цапфы.

Неразъемные подшипники делятся на несколько типов: узкие, широкие, фланцевые, гнездовые. Наиболее прост неразъемный подшипник, представляющий собой бобышку станины или рамы машины с расточкой цилиндрического отверстия для вала.

Более удобны неразъемные подшипники, но выполненные отдельно и соединяемые со станиной болтами (рис. 229). Подшипники подобного типа изготовляют с вкладышем и без вкладыша. Вкладыш представляет собой втулку (из чугуна, бронзы, древесного пластика или другого антифрикционного материала), запрессованную в отверстие. Часто металлические вкладыши заливают тонким слоем антифрикционного сплава (баббита и др.).

Недостаток опор такого типа — отсутствие возможности компенсации износа рабочей поверхности отверстия путем сближения одной его части с другой. Неразъемные опоры скольжения можно применять для сравнительно жестких осей и валов.

На рис. 230 показан разъемный подшипник. Подшипники этой группы состоят из корпуса 5, разрезного вкладыша 4, крышки 3 и болтов 1. Вкладыш неподвижен относительно корпуса и крышки.

Решение. Воспользуемся уравнением относительного движения 

Проектируя все силы на касательную, имеем:

.Перейдем к интегрированию по x ,,

.

Интегрируя, получаем значение относительной скорости:

 

Теорема об изменении кинетической энергии точки. В диффер-ной форме: – полный дифференциал кинетической энергии мат.точки = элементарной работе всех действующих на точку сил. – кинетическая энергия матер.точки. В конечном виде: – изменение кинетической энергии мат.точки, при переходе ее из начального в конечное (текущее) положение равно сумме работ на этом перемещении всех сил, приложенных к точке.

Подшипники качения — стандартные изделия, которые изготовляются в массовом количестве на специализированных заводах

Назначение и классификация муфт Муфтами называюи устройства, служащие для соединения валов между собой или с деталями, свободно насаженными на валы (зубчатые колеса, шкивы), с целью передачи вращающего момента. Муфты делятся на сцепные и постоянные. Сцепные муфты бывают фрикционные и кулачковые Жесткие и упругие компенсирующие муфты применяют для компенсации погрешностей в относительном положении и соединяемых валов; смещения центров; взаимного наклона осей; осевого смещения. Возможность компенсировать тот или иной вид отклонений зависит от конструкции муфты. Сцепные и предохранительные муфты Сцепные муфты предназначены для соединения и разъединения валов во время вращения (на ходу) или во время остановки (в покое)

Динамика системы материальных точек. Силы внешние и внутренние. Свойства внутренних сил. Дифференциальные уравнения движения системы материальных точек в инерциальной системе отсчета. Система материальных точек как модель материального тела (или системы материальных тел).
Расчеты на прочность при изгибе Теоретическая механика Сопротивление материалов //-->