Математический анализ

Введение в математический анализ

Числовая последовательность

Определение

Ограниченные и неограниченные последовательности

Монотонные последовательности

Число е

Связь натурального и десятичного логарифмов

Предел функции при стремлении аргумента к бесконечности

Основные теоремы о пределах

Бесконечно малые функции

Бесконечно большие функции и их связь с бесконечно малыми

Свойства эквивалентных бесконечно малых

Некоторые замечательные пределы

Пример

Непрерывность функции в точке

Непрерывность некоторых элементарных функций

Точки разрыва и их классификация

Свойства функций, непрерывных на отрезке

Пример

Комплексные числа

Тригонометрическая форма числа

Возведение в степень

Показательная форма комплексного числа

Разложение многочлена на множители

Пример

Элементы высшей алгебры

Основные понятия теории множеств

Операции над множествами

Пример

Отношения и функции

Алгебраические структуры

Дискретная математика

Элементы комбинаторики

Бином Ньютона. (полиномиальная формула)

Пример

Элементы математической логики

Конъюнкция Дизъюнкция

Импликация Эквиваленция

Примеры

Булевы функции

Исчисление предикатов

Конечные графы и сети. Основные определения

Матрицы графов

Примеры

Достижимость и связность.

Деревья и циклы

Элементы топологии

Открытые и замкнутые множества

Непрерывные отображения

Топологические произведения

Задание 2.

2. (а, б)

Вычисление производных функций в условиях этих пунктов производиться по формулам и правилам, указанным на стр. 16, 17, что касается пункта (в), то решение можно выполнить, используя предварительное логарифмирование (метод логарифмического дифференцирования).

Например, дана функция: . Найти .

Решение:

Логарифмируем по основанию е обе части данной функции

 

Использовали свойство логарифмов . Получили неявную функцию. Дифференцируем ее по правилу произведения , при этом используем формулы

 

,  умножим обе части на y,

тогда получим

 

; но , значит

.

Ответ:  .

Замечание: Можно далее продолжать алгебраические преобразования, но мы не будем их делать: достаточно показать, прежде всего, технику дифференцирования.

 

Можно решить эту задачу, используя формулу производной степенно-показательной функции: .

В данной задаче , .

Значит,

вынесем  за скобки

 

 

Ответ: .

Как видим, результаты решения совпадают.

Задание 3.

Построить график функции с полным исследованием.

3.

Общая схема исследования функции:

 Общую схему полного исследования функции разделим на 4 этапа:

Исследование функции без производных.

Исследование функции с использованием производной первого порядка.

Исследование функции с использованием производной второго порядка.

Эскиз графика по полученным данным.

 

Решение:

I. Исследование функции без производных.

1) Область определения функции D(y)=(-∞; 2)È(2; ∞), т.к. при x=2 дробь  не существует.

2) четность/нечетность функции.

Проверим равенства:

  – определение четной функции.

  – определение нечетной функции.

Вычислим:

Значит, данная функция не является четной, и не является нечетной.

Геометрически это обозначает, что график данной функции не симметричен ни относительно оси Oy, ни относительно точки O(0,0) – начала координат.

3) Найдем дополнительные точки, в частности точки пересечения графика функции с осями координат. В данном случае это довольно легко найти.

При  .

Найдена точка A(0;-9).

При  

Решим это уравнение, сделав некоторые преобразования:

Т.к.  решаемое уравнение не имеет действительных корней, а это значит точек пересечения с осью Ox график не имеет.

4) Находим асимптоты графика функции.

Прямая   является вертикальной асимптотой, т.к. при  функция имеет бесконечный разрыв. Наклонные асимптоты найдем, используя формулу:

, где

Используя формулу , найдем

.

Подставим ,  в уравнение .

Получим уравнение наклонной асимптоты .

Лекции курсовые задачи чертежи лабораторные - математика, физика, ТОЭ, инженерная графика