Расчет валов на изгиб с кручением

Позиционные задачи Инженерная графика

С сочетанием изгиба и кручения брусьев круглого поперечного сечения наиболее часто приходится встречаться при расчете валов, реже других деталей и брусьев некруглого сечения.

Если внешние силы, действующие на вал не лежат в одной плоскости, например в валах редукторов, то каждую из них раскладывают на ее составляющие по двум направлениям: вертикальному и горизонтальному. Затем строят эпюры изгибающих моментов в вертикальной и горизонтальных плоскостях. Величину суммарного изгибающего момента находят по формуле:

Для построения эпюры полных изгибающих моментов по вышеприведенной формуле находят моменты на границах силовых участков и, по ним собственно, строят эпюру. Плоскости действия этих моментов в разных сечениях вала различны, но ординаты эпюры условно для всех сечений совмещают с плоскостью чертежа.

Эпюра крутящих моментов строится так же, как и при чистом кручении.

Опасное сечение вала устанавливается с помощью эпюр полных изгибающих моментов М и крутящих моментов Мк по одной из теорий прочности. Если в сечении вала постоянного диаметра с наибольшим изгибающим моментом М действует наибольший крутящий момент Мк, то это сечение является опасным.

Если же такого явного совпадения нет, то опасным может оказаться сечение, в котором ни М ни Мк не являются наибольшими. Еще больше осложняется задача при валах переменного диаметра; у таких валов наиболее опасным может оказаться такое сечение, в котором действуют значительно меньшие изгибающие и крутящие моменты, чем в других сечениях.

В случаях, когда  опасное сечение не может быть установлено непосредственно по эпюрам М и Мк, необходимо проверить прочность вала в нескольких предположительно опасных сечениях.

После установления опасного сечения вала находят в нем опасные точки. В сечении возникают одновременно нормальные напряжения от изгибающего момента и касательные напряжения от крутящего момента и поперечной силы. В валах круглого сечения, длина которых во много раз больше диаметра, величины наибольших касательных напряжений от поперечной силы относительно невелики и при расчете прочности валов на совместное действие изгиба и кручения не учитываются.

Наибольшие напряжения в сечении вала, как нормальные так и касательные, возникают в точках, расположенных по периметру сечения и они равны: ,

где соответственно осевой и полярный моменты сопротивления поперечного сечения бруса.

Расчет валов на прочность при изгибе с кручением, как уже отмечалось выше, производится с применением теорий прочности. При этом расчет валов из пластичных материалов выполняется на основе третьей или четвертой теорий прочности, а из хрупких – по теории Мора.

По третьей теории прочности

По четвертой теории прочности

Эти условия прочности можно выразить и через моменты

По теории прочности Мора

где Мприв – приведенный момент по теории прочности Мора

Таким образом, расчет вала круглого поперечного сечения на совместное действие изгиба и кручения по форме совпадает с расчетом на прямой изгиб, но в расчетной формуле роль изгибающего момента играет приведенный момент, величина которого зависит от изгибающих и крутящего моментов, а также от принятой теории прочности.

Расчет болтовых и заклепочных соединений В зависимости от числа срезов одного болта или одной заклепки их называют односрезными, двухсрезными и т.д.

Болты или заклепки, работающие одновременно на срез и растяжение, следует проверять отдельно на срез и на растяжение.

Привязка линии размещения болтов (заклепок) в один ряд находится из условия: m = b/2 + 5 мм.

Рассчитать количество заклепок диаметром d = 4 мм, необходимое для соединения профилей толщиной 1мм с фасонкой толщиной t = 2 мм . Сила F = 35 кН, расчетные сопротивления материала заклепок, профилей и косынки (дюралюминий) равны: на срез Rbs = 105 МПа, на смятие Rbр = 300 МПа, коэффициент условий работы соединения γb = 0,95.

Определить длину флангового сварного шва, необходимую для соединения двумя накладками с двух сторон стальных листов, растягиваемых усилием F = = 500 кН

Определить длину l призматической шпонки, с помощью которой соединены вал 1 диаметром 0,036 м с колесом 2

Определить напряжения среза τср и смятия σсм в этом соединении, если сдвигающее усилие F = 240 кН.

Кручение Кручением называют деформацию, возникающую при действии на стержень пары сил, расположенной в плоскости, перпендикулярной к его оси

Расчет напряжений и деформаций валов В поперечных сечениях вала при кручении действуют только касательные напряжения, которые вычисляются по формуле:  

Найти наибольшее касательное напряжение и угол закручивания плеча ОВ, имеющего диаметр d = 8 мм и длину l = =25мм.

Для вала, показанного на рис. 3.2.9, построить эпюру изменения по длине вала величины касательного напряжения в крайней точке поперечного сечения.

Расчеты на прочность и жесткость валов круглого и кольцевого сечений.

Материал вала – сталь, модуль сдвига G = 8·104 МПа, расчетное сопротивление на срез Rs = 30 МПа, допускаемый угол закручивания .

Для вала, показанного на рис. 3.2.10, построить эпюру крутящих моментов, подобрать сплошное круглое и кольцевое сечения по участкам из условий прочности и жесткости.

Определяем наибольшие касательные напряжения на каждом участке, используя формулу (3.2.4):.

Статически неопределимые задачи на кручение Как известно, статически неопределимыми называют задачи, в которых число неизвестных опорных реакций или число внутренних усилий превышает число возможных уравнений статики.

Задача 3.2.27. Построить эпюру Т и произвести ее проверку для вала, показанного на рис. 3.2.17. Ответ: Т1 = 25 Нּм; Т2 = 225 Нּм, Т3 = –175 Нּм.

Диаметр стержня в пределах I и II участков будем обозначать d1, а в пределах участка III – d4. Согласно условию задачи между d1 и d4, существует соотношение

и , тогда откуда .

Расчет винтовых пружин с малым шагом Приведем основные сведения по элементарной теории расчета на прочность и жесткость витых цилиндрических пружин с постоянным и малым шагом витка l, при котором угол наклона витка к горизонту мал и можно положить, что cosα 1

Лекции курсовые задачи чертежи лабораторные - математика, физика, ТОЭ, инженерная графика