Расчет валов на изгиб с кручением На вал круглого сплошного сечения

Устойчивость сжатых стержней (продольный изгиб) Понятие об устойчивых и неустойчивых формах равновесия. Критические нагрузки. Устойчивость сжатых стержней в упругой стадии. Формула Эйлера для стержня с шарнирными опорами по концам (основной случай). Учет других видов закрепления. Понятие о гибкости и приведенной длине стержня. Формула Эйлера, записываемая через приведенную длину стержня. Предел применимости формулы Эйлера.

Плоский поперечный изгиб

 Изгиб представляет собой такую деформацию, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса. Изгиб называют чистым, если изгибающий момент является единственным внутренним усилием, возникающим в поперечном сечении бруса (балки). Изгиб называют поперечным, если в поперечных сечениях бруса наряду с изгибающими моментами возникают также и поперечные силы. Если плоскость действия изгибающего момента проходит через одну из главных центральных осей поперечного сечения, то изгиб носит название плоского или прямого.

4.1. Построение эпюр изгибающих моментов и поперечных сил


Поперечная сила в сечении балки а – а считается положительной, если равнодействующая внешних сил слева от рассматриваемого сечения направлена снизу вверх, а справа – сверху вниз (рис. 4.1.1, а), и отрицательной – в противоположном случае (рис. 4.1.1, б). Иногда пользуются следующим правилом: положительная поперечная сила стремится повернуть балку вокруг рассматриваемого сечения по часовой стрелке, а отрицательная – против часовой стрелки.

  Ординаты эпюр поперечных сил, соответствующие положительным значениям, будем откладывать вверх от осей эпюр, а отрицательным – вниз (ось эпюры должна быть направлена параллельно оси балки).

 Изгибающий момент в сечении балки а-а считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по часовой стрелке, а справа – против часовой стрелки (рис. 4.1.2, а), и отрицательным – в противоположном случае (рис. 4.1.2, б). 

 Ординаты эпюр изгибающих моментов, соответствующие положительным значениям, будем откладывать вниз от осей этих эпюр, а отрицательным – вверх (ось эпюры должна быть направлена параллельно оси балки).

  Таким образом, устанавливаясь откладывать положительные ординаты эпюры изгибающих моментов вниз от оси балки, мы получим, что эпюра оказывается построенной со стороны растянутых волокон балки.

 Теорема Журавского (теорема Шведлера). Производная от изгибающего момента M по длине балки равна поперечной силе Q:

  (4.1.1)

 Производная от поперечной силы Q по длине балки равна распределенной нагрузке q:

  (4.1.2)

 В сопротивлении материалов рассматриваются вопросы расчета отдельных элементов конструкций на прочность, жесткость и устойчивость. В настоящем разделе собраны типичные задачи по различным видам простого и сложного сопротивления отдельного бруса.

 Изложены основные сведения по всем вопросам сопротивления материалов. Расчетные формулы даны без выводов, но с необходимыми пояснениями, облегчающими их практическое применение.

  Задачам по каждой теме предшествует иллюстративное решение типовых задач с методическими указаниями. Все остальные задачи снабжены ответами.

Г л а в а 1

  РАСТЯЖЕНИЕ, СЖАТИЕ

 В этой главе, в основном, будет рассматриваться брус. Брус – это тело, у которого два размера малы по сравнению с третьим. Брус с прямолинейной осью называют стержнем. Ось бруса – это линия, которая соединяет центры тяжести его поперечных сечений.

 Под действием приложенных сил тело деформируется. Изменение линейных размеров тела называется линейной деформацией, а изменение угловых размеров – угловой деформацией. Удлинение – это увеличение линейных размеров тела, а укорочение – уменьшение линейных размеров тела.

 Пусть прямой брус длиной l заделан одним концом, а на другом конце приложена внешняя сосредоточенная сила F. Под действием этой силы брус удлинится на величину , которая называется полным (абсолютным) удлинением, тогда

  (1.1)

где – относительная продольная деформация.

 Перемещение точки – расстояние между первоначальным положением точки (до приложения внешних нагрузок) и ее положением после деформации, взятое в определенном направлении, например, вдоль оси стержня.

 Центральное растяжение (сжатие) – это такой случай напряженного состояния, когда в поперечных сечениях стержня возникают только нормальные силы N.

 На основании гипотезы плоских сечений все продольные волокна стержня испытывают одинаковые удлинения или укорочения. Следовательно, при растяжении и сжатии нормальные напряжения  распределены равномерно по поперечному сечению стержня, поэтому

  (1.2)

где А –площадь поперечного сечения стержня.

  Зависимость между нормальным напряжением  и относительной деформацией  в пределах упругости при растяжении и сжатии имеет вид (закон Гука):

  (1.3)

где Е – модуль продольной упругости (модуль Юнга).

Продольно - поперечный изгиб прямого бруса Понятие о продольно-поперечном изгибе. Расчет по деформированному состоянию. Дифференциальное уравнение продольно-поперечного изгиба. Продольный изгиб бруса с небольшим начальным напряжением в главной плоскости. Продольный изгиб бруса силой, приложенной с эксцентриситетом на главной оси инерции. Продольно-поперечный изгиб при наличии поперечной нагрузки. Приближенный метод. Расчет на прочность при продольно-поперечном изгибе.
Понятие о главных центральных осях инерции сечения