Расчет валов на изгиб с кручением На вал круглого сплошного сечения

Внутренние силы и метод их изучения (метод сечений). Напряжение полное, нормальное и касательное. Главный вектор и главный момент внутренних сил в сечении. Внутренние силовые факторы в поперечном сечении бруса. Продольные и поперечные силы, крутящий и изгибающий моменты. Их выражения через напряжения. Виды простейших деформаций бруса: растяжение-сжатие, сдвиг, кручение, изгиб. Понятие о расчетной схеме бруса. Расчеты по деформированному и недеформированному состояниям. Принцип независимости действия внешних сил.

Определить максимальный прогиб однопролетной балки, изображенной на рис. 4.4.2. Жесткость балки на изгиб постоянна и равна EI.

 

 Решение. Определяем опорные реакции RA, RB. С учетом симметрии находим RA = RB = ql/2.

 Мысленно проводим сечения в каждом из трех участков рассматриваемой балки. Сечения имеют абсциссы х1, х2 и х3, так как начало координат помещено в точке А.

 Запишем значения изгибающих моментов в каждом из проведенных сечений:

 

  При определении МIII учитывалось, что распределенную нагрузку q необходимо продолжить вправо на всю длину балки, а на третьем участке необходимо ввести компенсирующую нагрузку, противоположную по направлению заданной и с той же интенсивностью q. Проведенная операция с распределенной нагрузкой q не влияет на напряженно-деформированное состояние балки, но дает преимущества при вычислении произвольных постоянных С и D.

 Интегрируем полученные выражения согласно формуле (4.4.2) с учетом указаний (4.4.5):

 

  (4.4.7)

 Интегрируя еще раз полученные зависимости, получаем значения прогибов для каждого участка балки:

 

  (4.4.8)

 Для определения постоянных интегрирования С и D необходимо поставить два граничных условия. Рассматривая балку на рис. 4.4.2, замечаем, что прогибы на опорах А и В равны нулю, так как шарнирно подвижная В и шарнирно неподвижная А опоры препятствуют вертикальному перемещению концов балки. Следовательно, граничные условия можно записать как: при х1 = 0 имеем уI = 0 и при х3 = 2a + l имеем уIII = 0.

 Применительно к формулам (4.4.8) получаем, что при x1 = 0 имеем yI = =D = 0, откуда D = 0, а при x3 = 2a + l имеем

откуда, принимая 2a + l = L, находим:

  Подставляя полученное выражение для C и D = 0 в формулы (4.4.8), определяем

  Подставляя выражение для определения С и равенство D = 0 в формулы (4.4.7), получим формулы для вычисления углов поворота поперечных сечений балки для каждого участка.

  По условию задачи требуется определить максимальный прогиб балки. С учетом симметрии балки (рис. 4.4.2) делаем вывод, что уmax будет посередине второго участка или что то же самое в середине пролета балки. Для вычисления уmax используем формулу для прогибов второго участка при x2 = L/2 или x2 = a + l/2:

  Полагая a = 0, l = L из полученной формулы можно получить максимальный прогиб в середине пролета балки (рис. 4.2.6), полностью загруженной равномерно распределенной нагрузкой q

 Подставляя значение x2 = L/2 или x2 = a + l/2, находим угол поворота поперечного сечения в середине второго участка (x = L/2) = 0.

Задача 1.1.17. В стенке стального двутавра № 20 вырезано отверстие диаметром d = 10 см. Определить допускаемую равномерно распределенную нагрузку  (кг/м), которую можно приложить вдоль стенки двутавра (рис. 1.1.15). Расчетное сопротивление стали Ry = 2450 кг/см2, а = 1.

 Ответ:  = 84933 кг/м = 833,19 Н/м.

1.2. Перемещения поперечных сечений брусьев

в статически определимых задачах

 Задача 1.2.1. Определить перемещение нижнего конца стержня, изображенного на рис. 1.1.1, а. Задачу решить без учета собственного веса материала бруса. Принять  a = 0,5 м; А = 10 см2; сосредоточенная сила F = 10 кН.

  Решение. Для рассматриваемого случая эпюра нормальных сил представлена на рис. 1.1.1, е. Для стержня со ступенчатым изменением площади и нормальных сил перемещения поперечных сечений вычисляются по формуле (1.7). Рассматривая рис. 1.1.1, а и рис. 1.1.1, е, запишем формулу (1.7) для определения перемещения нижнего конца стержня в виде:

 Знак «минус» в ответе показывает, что общая длина стержня уменьшится, т.е. нижний конец стержня переместится вверх вдоль его оси на величину мм.

Растяжение и сжатие прямого бруса Центральное растяжение или сжатие. Продольные силы. Дифференциальные зависимости между продольными силами и нагрузкой. Эпюры продольных сил. Напряжения в поперечных сечениях бруса. Основные допущения. Эпюра напряжений. Напряжения в сечениях, наклонных к оси бруса. Продольные и поперечные деформации бруса. Закон Гука при растяжении и сжатии.
Понятие о главных центральных осях инерции сечения